Incorporation of inhomogeneous ion diffusion coefficients into kinetic lattice grand canonical monte carlo simulations and application to ion current calculations in a simple model ion channel.

نویسندگان

  • Hyonseok Hwang
  • George C Schatz
  • Mark A Ratner
چکیده

To deal with inhomogeneous diffusion coefficients of ions without altering the lattice spacing in the kinetic lattice grand canonical Monte Carlo (KLGCMC) simulation, an algorithm that incorporates diffusion coefficient variation into move probabilities is proposed and implemented into KLGCMC calculations. Using this algorithm, the KLGCMC simulation method is applied to the calculation of ion currents in a simple model ion channel system. Comparisons of ion currents and ion concentrations from these simulations with Poisson-Nernst-Planck (PNP) results show good agreement between the two methods for parameters where the latter method is expected to be accurate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic lattice grand canonical Monte Carlo simulation for ion current calculations in a model ion channel system.

An algorithm in which kinetic lattice grand canonical Monte Carlo simulations are combined with mean field theory (KLGCMC/MF) is presented to calculate ion currents in a model ion channel system. In this simulation, the relevant region of the system is treated by KLGCMC simulations, while the rest of the system is described by modified Poisson-Boltzmann mean field theory. Calculation of reactio...

متن کامل

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels.

A computational algorithm based on Grand Canonical Monte Carlo (GCMC) and Brownian Dynamics (BD) is described to simulate the movement of ions in membrane channels. The proposed algorithm, GCMC/BD, allows the simulation of ion channels with a realistic implementation of boundary conditions of concentration and transmembrane potential. The method is consistent with a statistical mechanical formu...

متن کامل

Entropic selectivity of microporous materials¤

The absorption of hard spheres into narrow pores is examined in the framework of RosenfeldÏs ““ fundamental measure ÏÏ formulation of density functional theory (DFT) for inhomogeneous Ñuids. The inÑuence of the dimensionality of the conÐning geometry is assessed by considering the cases of a spherical cavity, an inÐnite cylindrical channel and an inÐnite slit. The pores are assumed to be in che...

متن کامل

Effect of Induced Dipole-Induced Dipole Potential and the Size of Colliding Particles on Ion-Quadrupolar Molecule Collision Rate Constants

Classical trajectory (Monte Carlo) calculation is used to calculate collision rate constants of ion-quadrupolar molecule interactions for the H¯+C2H2 system. The method presented here takes into account the effect of the induced dipole-induced dipole potential on ion-quadrupolar molecule collision rate constants. It is also assumed that the colliding particles have a d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 111 49  شماره 

صفحات  -

تاریخ انتشار 2007